Workflows
These workflows are associated with Filter, plot and explore single-cell RNA-seq data with Scanpy
To use these workflows in Galaxy you can either click the links to download the workflows, or you can right-click and copy the link to the workflow which can be used in the Galaxy form to import workflows.
CS3_Filter, Plot and Explore Single-cell RNA-seq Data
Last updated Nov 18, 2022
Launch in Tutorial Mode
License:
None Specified, defaults to
CC-BY-4.0
Tests: ❌
Results: Not yet automated
flowchart TD 0["ℹ️ Input Dataset\nMito-counted AnnData"]; style 0 stroke:#2c3143,stroke-width:4px; 1["Inspect AnnData"]; 0 -->|output| 1; 2["Scanpy FilterCells"]; 0 -->|output| 2; 08175d7f-f4f4-413c-ad86-f59587ff692e["Output\nGenes-filtered Object"]; 2 --> 08175d7f-f4f4-413c-ad86-f59587ff692e; style 08175d7f-f4f4-413c-ad86-f59587ff692e stroke:#2c3143,stroke-width:4px; 3["Plot"]; 0 -->|output| 3; bfc499ee-630a-498b-9be6-696d9bb78837["Output\nScatter - genes x UMIs"]; 3 --> bfc499ee-630a-498b-9be6-696d9bb78837; style bfc499ee-630a-498b-9be6-696d9bb78837 stroke:#2c3143,stroke-width:4px; 4["Plot"]; 0 -->|output| 4; f2c78ef3-7d31-4930-954c-0133cce27a41["Output\nScatter - mito x genes"]; 4 --> f2c78ef3-7d31-4930-954c-0133cce27a41; style f2c78ef3-7d31-4930-954c-0133cce27a41 stroke:#2c3143,stroke-width:4px; 5["Plot"]; 0 -->|output| 5; 348818e6-9def-41fd-a390-6f8525c57cd8["Output\nViolin - genotype - log"]; 5 --> 348818e6-9def-41fd-a390-6f8525c57cd8; style 348818e6-9def-41fd-a390-6f8525c57cd8 stroke:#2c3143,stroke-width:4px; 6["Plot"]; 0 -->|output| 6; 844f5e7c-78c8-4f28-8e15-cea35ada8fef["Output\nViolin - batch - log"]; 6 --> 844f5e7c-78c8-4f28-8e15-cea35ada8fef; style 844f5e7c-78c8-4f28-8e15-cea35ada8fef stroke:#2c3143,stroke-width:4px; 7["Inspect AnnData"]; 0 -->|output| 7; 8["Plot"]; 0 -->|output| 8; 3b1232c5-d16a-434d-806e-79fd77f7c05f["Output\nScatter - mito x UMIs"]; 8 --> 3b1232c5-d16a-434d-806e-79fd77f7c05f; style 3b1232c5-d16a-434d-806e-79fd77f7c05f stroke:#2c3143,stroke-width:4px; 9["Inspect AnnData"]; 0 -->|output| 9; 10["Plot"]; 0 -->|output| 10; a639cdc0-da40-4df9-8348-23117528b24a["Output\nViolin - sex - log"]; 10 --> a639cdc0-da40-4df9-8348-23117528b24a; style a639cdc0-da40-4df9-8348-23117528b24a stroke:#2c3143,stroke-width:4px; 11["Plot"]; 2 -->|output_h5ad| 11; 69bf3e42-63e2-4b5b-9d63-5aac9d6b5691["Output\nViolin - Filterbygenes"]; 11 --> 69bf3e42-63e2-4b5b-9d63-5aac9d6b5691; style 69bf3e42-63e2-4b5b-9d63-5aac9d6b5691 stroke:#2c3143,stroke-width:4px; 12["Scanpy FilterCells"]; 2 -->|output_h5ad| 12; f378cb4e-0a77-49d9-b92a-752dbea4b09a["Output\nCounts-filtered Object"]; 12 --> f378cb4e-0a77-49d9-b92a-752dbea4b09a; style f378cb4e-0a77-49d9-b92a-752dbea4b09a stroke:#2c3143,stroke-width:4px; 13["Inspect AnnData"]; 2 -->|output_h5ad| 13; f9e862db-eb22-4124-8fe0-0fdcfcfb8393["Output\nGeneral - Filterbygenes"]; 13 --> f9e862db-eb22-4124-8fe0-0fdcfcfb8393; style f9e862db-eb22-4124-8fe0-0fdcfcfb8393 stroke:#2c3143,stroke-width:4px; 14["Inspect AnnData"]; 12 -->|output_h5ad| 14; 794f72b5-c2c3-46a0-ac15-b9f1e94941d2["Output\nGeneral - Filterbycounts"]; 14 --> 794f72b5-c2c3-46a0-ac15-b9f1e94941d2; style 794f72b5-c2c3-46a0-ac15-b9f1e94941d2 stroke:#2c3143,stroke-width:4px; 15["Scanpy FilterCells"]; 12 -->|output_h5ad| 15; b915da66-6435-4871-baa0-3e494ba73c96["Output\nMito-filtered Object"]; 15 --> b915da66-6435-4871-baa0-3e494ba73c96; style b915da66-6435-4871-baa0-3e494ba73c96 stroke:#2c3143,stroke-width:4px; 16["Plot"]; 12 -->|output_h5ad| 16; 3aef86d7-d34d-4b24-bc97-bf8c97d8d2fa["Output\nViolin - Filterbycounts"]; 16 --> 3aef86d7-d34d-4b24-bc97-bf8c97d8d2fa; style 3aef86d7-d34d-4b24-bc97-bf8c97d8d2fa stroke:#2c3143,stroke-width:4px; 17["Inspect AnnData"]; 15 -->|output_h5ad| 17; cd94a4c6-5665-4bdf-88ea-4f4d41efa893["Output\nGeneral - Filterbymito"]; 17 --> cd94a4c6-5665-4bdf-88ea-4f4d41efa893; style cd94a4c6-5665-4bdf-88ea-4f4d41efa893 stroke:#2c3143,stroke-width:4px; 18["Scanpy FilterGenes"]; 15 -->|output_h5ad| 18; ee63ef0a-98ed-45cb-b144-1154f84ae452["Output\nFiltered Object"]; 18 --> ee63ef0a-98ed-45cb-b144-1154f84ae452; style ee63ef0a-98ed-45cb-b144-1154f84ae452 stroke:#2c3143,stroke-width:4px; 19["Plot"]; 15 -->|output_h5ad| 19; 7e48a14f-08fd-45ab-b613-606bf64dcf9d["Output\nViolin - Filterbymito"]; 19 --> 7e48a14f-08fd-45ab-b613-606bf64dcf9d; style 7e48a14f-08fd-45ab-b613-606bf64dcf9d stroke:#2c3143,stroke-width:4px; 20["Inspect AnnData"]; 18 -->|output_h5ad| 20; d59efa9b-d049-4f0e-8bd8-8ae982a45d0a["Output\nGeneral - Filtered object"]; 20 --> d59efa9b-d049-4f0e-8bd8-8ae982a45d0a; style d59efa9b-d049-4f0e-8bd8-8ae982a45d0a stroke:#2c3143,stroke-width:4px; 21["Scanpy NormaliseData"]; 18 -->|output_h5ad| 21; 22["Scanpy FindVariableGenes"]; 21 -->|output_h5ad| 22; 23["Scanpy ScaleData"]; 22 -->|output_h5ad| 23; 24["Scanpy RunPCA"]; 23 -->|output_h5ad| 24; 25["Plot"]; 24 -->|output_h5ad| 25; 993dea99-990f-460a-beb9-46e5c97ee898["Output\nPCA Variance"]; 25 --> 993dea99-990f-460a-beb9-46e5c97ee898; style 993dea99-990f-460a-beb9-46e5c97ee898 stroke:#2c3143,stroke-width:4px; 26["Scanpy ComputeGraph"]; 24 -->|output_h5ad| 26; 27["Scanpy RunTSNE"]; 26 -->|output_h5ad| 27; 28["Scanpy RunUMAP"]; 27 -->|output_h5ad| 28; 29["Scanpy FindCluster"]; 28 -->|output_h5ad| 29; 30["Scanpy FindMarkers"]; 29 -->|output_h5ad| 30; 308b4961-4d50-442b-9bca-bbb1992426ba["Output\nMarkers - cluster"]; 30 --> 308b4961-4d50-442b-9bca-bbb1992426ba; style 308b4961-4d50-442b-9bca-bbb1992426ba stroke:#2c3143,stroke-width:4px; 035bbbce-fb57-48c8-83d5-2b0cd0376541["Output\nFinal object"]; 30 --> 035bbbce-fb57-48c8-83d5-2b0cd0376541; style 035bbbce-fb57-48c8-83d5-2b0cd0376541 stroke:#2c3143,stroke-width:4px; 31["Scanpy FindMarkers"]; 29 -->|output_h5ad| 31; 1705e219-192a-4f52-9b26-64fcbcd303ea["Output\nMarkers - genotype"]; 31 --> 1705e219-192a-4f52-9b26-64fcbcd303ea; style 1705e219-192a-4f52-9b26-64fcbcd303ea stroke:#2c3143,stroke-width:4px; 32["Scanpy PlotEmbed"]; 30 -->|output_h5ad| 32; 33["Scanpy PlotEmbed"]; 30 -->|output_h5ad| 33; 34["Manipulate AnnData"]; 30 -->|output_h5ad| 34; 35["Scanpy PlotEmbed"]; 30 -->|output_h5ad| 35; 36["Inspect AnnData"]; 30 -->|output_h5ad| 36; 37["AnnData Operations"]; 34 -->|anndata| 37; 30 -->|output_h5ad| 37; 38["Join two Datasets"]; 30 -->|output_tsv| 38; 36 -->|var| 38; 39["Join two Datasets"]; 31 -->|output_tsv| 39; 36 -->|var| 39; 40["AnnData Operations"]; 37 -->|output_h5ad| 40; a6d48df0-403f-4efc-a75f-9504a960884e["Output\nFinal cell annotated object"]; 40 --> a6d48df0-403f-4efc-a75f-9504a960884e; style a6d48df0-403f-4efc-a75f-9504a960884e stroke:#2c3143,stroke-width:4px; 41["Cut"]; 38 -->|out_file1| 41; 0ee7f9b6-b065-4e26-93df-6e6e2fe458a9["Output\nMarkers - cluster - named"]; 41 --> 0ee7f9b6-b065-4e26-93df-6e6e2fe458a9; style 0ee7f9b6-b065-4e26-93df-6e6e2fe458a9 stroke:#2c3143,stroke-width:4px; 42["Cut"]; 39 -->|out_file1| 42; fdb88faa-9b76-4edb-b89b-427c098a473e["Output\nMarkers - genotype - named"]; 42 --> fdb88faa-9b76-4edb-b89b-427c098a473e; style fdb88faa-9b76-4edb-b89b-427c098a473e stroke:#2c3143,stroke-width:4px; 43["Scanpy PlotEmbed"]; 40 -->|output_h5ad| 43;
Filter, Plot and Explore Single-cell RNA-seq Data updated
Wendi Bacon, Julia Jakiela
Last updated Jun 13, 2023
Launch in Tutorial Mode
License:
CC-BY-4.0
Tests: ✅
Results: Not yet automated
flowchart TD 0["ℹ️ Input Dataset\nMito-counted AnnData"]; style 0 stroke:#2c3143,stroke-width:4px; 1["Inspect AnnData"]; 0 -->|output| 1; 2["Scanpy FilterCells"]; 0 -->|output| 2; 6a00b14b-d3f8-4771-963a-76115c8eaf2f["Output\nGenes-filtered Object"]; 2 --> 6a00b14b-d3f8-4771-963a-76115c8eaf2f; style 6a00b14b-d3f8-4771-963a-76115c8eaf2f stroke:#2c3143,stroke-width:4px; 3["Plot"]; 0 -->|output| 3; c123842e-b2d2-43ad-81f0-6ba3b45d4021["Output\nScatter - genes x UMIs"]; 3 --> c123842e-b2d2-43ad-81f0-6ba3b45d4021; style c123842e-b2d2-43ad-81f0-6ba3b45d4021 stroke:#2c3143,stroke-width:4px; 4["Plot"]; 0 -->|output| 4; f1020d4d-555e-42fa-ba21-52a151b91a5b["Output\nScatter - mito x genes"]; 4 --> f1020d4d-555e-42fa-ba21-52a151b91a5b; style f1020d4d-555e-42fa-ba21-52a151b91a5b stroke:#2c3143,stroke-width:4px; 5["Plot"]; 0 -->|output| 5; a7fe6020-8f1e-470a-9ed3-f2b5e95516e0["Output\nViolin - genotype - log"]; 5 --> a7fe6020-8f1e-470a-9ed3-f2b5e95516e0; style a7fe6020-8f1e-470a-9ed3-f2b5e95516e0 stroke:#2c3143,stroke-width:4px; 6["Plot"]; 0 -->|output| 6; 15e501bc-8ddb-4519-89eb-dde431ea96c1["Output\nViolin - batch - log"]; 6 --> 15e501bc-8ddb-4519-89eb-dde431ea96c1; style 15e501bc-8ddb-4519-89eb-dde431ea96c1 stroke:#2c3143,stroke-width:4px; 7["Inspect AnnData"]; 0 -->|output| 7; 8["Plot"]; 0 -->|output| 8; eff22f46-baa6-4e00-ba82-d5e12ce26ff0["Output\nScatter - mito x UMIs"]; 8 --> eff22f46-baa6-4e00-ba82-d5e12ce26ff0; style eff22f46-baa6-4e00-ba82-d5e12ce26ff0 stroke:#2c3143,stroke-width:4px; 9["Inspect AnnData"]; 0 -->|output| 9; 10["Plot"]; 0 -->|output| 10; 56677ca4-129c-476c-85ec-69d1bb3d800d["Output\nViolin - sex - log"]; 10 --> 56677ca4-129c-476c-85ec-69d1bb3d800d; style 56677ca4-129c-476c-85ec-69d1bb3d800d stroke:#2c3143,stroke-width:4px; 11["Plot"]; 2 -->|output_h5ad| 11; acb61ea4-bcb9-45db-beef-e2bf1a176701["Output\nViolin - Filterbygenes"]; 11 --> acb61ea4-bcb9-45db-beef-e2bf1a176701; style acb61ea4-bcb9-45db-beef-e2bf1a176701 stroke:#2c3143,stroke-width:4px; 12["Scanpy FilterCells"]; 2 -->|output_h5ad| 12; 51853662-4519-4229-a2ea-b22a53e7ef73["Output\nCounts-filtered Object"]; 12 --> 51853662-4519-4229-a2ea-b22a53e7ef73; style 51853662-4519-4229-a2ea-b22a53e7ef73 stroke:#2c3143,stroke-width:4px; 13["Inspect AnnData"]; 2 -->|output_h5ad| 13; 362a7fe6-24bb-4398-ae48-870f4b4bb774["Output\nGeneral - Filterbygenes"]; 13 --> 362a7fe6-24bb-4398-ae48-870f4b4bb774; style 362a7fe6-24bb-4398-ae48-870f4b4bb774 stroke:#2c3143,stroke-width:4px; 14["Inspect AnnData"]; 12 -->|output_h5ad| 14; edf24149-9341-4fe7-b10c-3fcf092faaa5["Output\nGeneral - Filterbycounts"]; 14 --> edf24149-9341-4fe7-b10c-3fcf092faaa5; style edf24149-9341-4fe7-b10c-3fcf092faaa5 stroke:#2c3143,stroke-width:4px; 15["Scanpy FilterCells"]; 12 -->|output_h5ad| 15; a88ec405-265f-4a59-a75e-34e3b05b0096["Output\nMito-filtered Object"]; 15 --> a88ec405-265f-4a59-a75e-34e3b05b0096; style a88ec405-265f-4a59-a75e-34e3b05b0096 stroke:#2c3143,stroke-width:4px; 16["Plot"]; 12 -->|output_h5ad| 16; a7c8b0d9-82d3-4438-a212-b5f7c56d36b8["Output\nViolin - Filterbycounts"]; 16 --> a7c8b0d9-82d3-4438-a212-b5f7c56d36b8; style a7c8b0d9-82d3-4438-a212-b5f7c56d36b8 stroke:#2c3143,stroke-width:4px; 17["Inspect AnnData"]; 15 -->|output_h5ad| 17; 56882809-e19f-451a-8010-bc55dcee482f["Output\nGeneral - Filterbymito"]; 17 --> 56882809-e19f-451a-8010-bc55dcee482f; style 56882809-e19f-451a-8010-bc55dcee482f stroke:#2c3143,stroke-width:4px; 18["Scanpy FilterGenes"]; 15 -->|output_h5ad| 18; 00846477-dec5-408a-83b2-105fff7ce05b["Output\nFiltered Object"]; 18 --> 00846477-dec5-408a-83b2-105fff7ce05b; style 00846477-dec5-408a-83b2-105fff7ce05b stroke:#2c3143,stroke-width:4px; 19["Plot"]; 15 -->|output_h5ad| 19; 7582e113-2004-4255-a1f3-d3123373f342["Output\nViolin - Filterbymito"]; 19 --> 7582e113-2004-4255-a1f3-d3123373f342; style 7582e113-2004-4255-a1f3-d3123373f342 stroke:#2c3143,stroke-width:4px; 20["Inspect AnnData"]; 18 -->|output_h5ad| 20; 2d870a40-c602-4a1c-afef-450489354d39["Output\nGeneral - Filtered object"]; 20 --> 2d870a40-c602-4a1c-afef-450489354d39; style 2d870a40-c602-4a1c-afef-450489354d39 stroke:#2c3143,stroke-width:4px; 21["Scanpy NormaliseData"]; 18 -->|output_h5ad| 21; 22["Scanpy FindVariableGenes"]; 21 -->|output_h5ad| 22; a0eb92b1-0263-4179-b7af-4bd9bcc9c960["Output\nUse_me_FVG"]; 22 --> a0eb92b1-0263-4179-b7af-4bd9bcc9c960; style a0eb92b1-0263-4179-b7af-4bd9bcc9c960 stroke:#2c3143,stroke-width:4px; 23["Scanpy ScaleData"]; 22 -->|output_h5ad| 23; 5776dbb9-0cac-40c0-9bae-9accae16a7a0["Output\nUse_me_Scaled"]; 23 --> 5776dbb9-0cac-40c0-9bae-9accae16a7a0; style 5776dbb9-0cac-40c0-9bae-9accae16a7a0 stroke:#2c3143,stroke-width:4px; 24["Scanpy RunPCA"]; 23 -->|output_h5ad| 24; 25["Plot"]; 24 -->|output_h5ad| 25; f0b6f578-050f-4936-9ee7-9956b0760c6f["Output\nPCA Variance"]; 25 --> f0b6f578-050f-4936-9ee7-9956b0760c6f; style f0b6f578-050f-4936-9ee7-9956b0760c6f stroke:#2c3143,stroke-width:4px; 26["Scanpy ComputeGraph"]; 24 -->|output_h5ad| 26; 27["Scanpy RunTSNE"]; 26 -->|output_h5ad| 27; 28["Scanpy RunUMAP"]; 27 -->|output_h5ad| 28; 29["Scanpy FindCluster"]; 28 -->|output_h5ad| 29; 30["Scanpy FindMarkers"]; 29 -->|output_h5ad| 30; 7cfe5c9c-1c80-41b4-b669-633b1d7d40e3["Output\nMarkers - cluster"]; 30 --> 7cfe5c9c-1c80-41b4-b669-633b1d7d40e3; style 7cfe5c9c-1c80-41b4-b669-633b1d7d40e3 stroke:#2c3143,stroke-width:4px; 98e98405-951e-4c6c-be01-3c925ae35449["Output\nFinal object"]; 30 --> 98e98405-951e-4c6c-be01-3c925ae35449; style 98e98405-951e-4c6c-be01-3c925ae35449 stroke:#2c3143,stroke-width:4px; 31["Scanpy FindMarkers"]; 29 -->|output_h5ad| 31; 1e9f229d-eb34-4a5b-a6d9-e70c7b0581f4["Output\nMarkers - genotype"]; 31 --> 1e9f229d-eb34-4a5b-a6d9-e70c7b0581f4; style 1e9f229d-eb34-4a5b-a6d9-e70c7b0581f4 stroke:#2c3143,stroke-width:4px; 32["Scanpy PlotEmbed"]; 30 -->|output_h5ad| 32; 33["Scanpy PlotEmbed"]; 30 -->|output_h5ad| 33; 34["Manipulate AnnData"]; 30 -->|output_h5ad| 34; 35["Scanpy PlotEmbed"]; 30 -->|output_h5ad| 35; 36["Inspect AnnData"]; 30 -->|output_h5ad| 36; 37["AnnData Operations"]; 34 -->|anndata| 37; 30 -->|output_h5ad| 37; 38["Join two Datasets"]; 30 -->|output_tsv| 38; 36 -->|var| 38; 39["Join two Datasets"]; 31 -->|output_tsv| 39; 36 -->|var| 39; 40["AnnData Operations"]; 37 -->|output_h5ad| 40; 10bd70f8-ffcb-442b-9647-e5b947b6d35e["Output\nFinal cell annotated object"]; 40 --> 10bd70f8-ffcb-442b-9647-e5b947b6d35e; style 10bd70f8-ffcb-442b-9647-e5b947b6d35e stroke:#2c3143,stroke-width:4px; 41["Cut"]; 38 -->|out_file1| 41; 4f822c1c-91c5-4be4-8f9b-d5bdda0a037e["Output\nMarkers - cluster - named"]; 41 --> 4f822c1c-91c5-4be4-8f9b-d5bdda0a037e; style 4f822c1c-91c5-4be4-8f9b-d5bdda0a037e stroke:#2c3143,stroke-width:4px; 42["Cut"]; 39 -->|out_file1| 42; 3b471f3d-263d-4299-9b7d-8a8ae1aa556e["Output\nMarkers - genotype - named"]; 42 --> 3b471f3d-263d-4299-9b7d-8a8ae1aa556e; style 3b471f3d-263d-4299-9b7d-8a8ae1aa556e stroke:#2c3143,stroke-width:4px; 43["Scanpy PlotEmbed"]; 40 -->|output_h5ad| 43;
Importing into Galaxy
Below are the instructions for importing these workflows directly into your Galaxy server of choice to start using them!Hands-on: Importing a workflow
- Click on Workflow on the top menu bar of Galaxy. You will see a list of all your workflows.
- Click on galaxy-upload Import at the top-right of the screen
- Provide your workflow
- Option 1: Paste the URL of the workflow into the box labelled “Archived Workflow URL”
- Option 2: Upload the workflow file in the box labelled “Archived Workflow File”
- Click the Import workflow button
Below is a short video demonstrating how to import a workflow from GitHub using this procedure: