papaa@0.1.9_PI3K_OG_model_tutorial
statistics-aberrant_pi3k_pathway_analysis/main-workflow
Launch in Tutorial Mode
question
galaxy-download Download
galaxy-download Download
flowchart TD 0["ℹ️ Input Dataset\npancan_rnaseq_freeze.tsv"]; style 0 stroke:#2c3143,stroke-width:4px; 1["ℹ️ Input Dataset\npancan_mutation_freeze.tsv"]; style 1 stroke:#2c3143,stroke-width:4px; 10["ℹ️ Input Dataset\nGSE69822_pi3k_sign.txt"]; style 10 stroke:#2c3143,stroke-width:4px; 11["ℹ️ Input Dataset\nGSE69822_pi3k_trans.csv"]; style 11 stroke:#2c3143,stroke-width:4px; 12["ℹ️ Input Dataset\nGDSC_CCLE_common_mut_cnv_binary.tsv.gz"]; style 12 stroke:#2c3143,stroke-width:4px; 13["ℹ️ Input Dataset\nccle_rnaseq_genes_rpkm_20180929_mod.tsv.gz"]; style 13 stroke:#2c3143,stroke-width:4px; 14["ℹ️ Input Dataset\nGDSC_EXP_CCLE_converted_name.tsv.gz"]; style 14 stroke:#2c3143,stroke-width:4px; 15["ℹ️ Input Dataset\nCCLE_MUT_CNA_AMP_DEL_binary_Revealer.tsv"]; style 15 stroke:#2c3143,stroke-width:4px; 16["ℹ️ Input Dataset\ncompounds_of_interest.txt"]; style 16 stroke:#2c3143,stroke-width:4px; 17["ℹ️ Input Dataset\ncosmic_cancer_classification.tsv"]; style 17 stroke:#2c3143,stroke-width:4px; 18["ℹ️ Input Dataset\npath_rtk_ras_pi3k_genes.txt"]; style 18 stroke:#2c3143,stroke-width:4px; 19["PAPAA: PanCancer classifier"]; 17 -->|output| 19; 3 -->|output| 19; 2 -->|output| 19; 1 -->|output| 19; 4 -->|output| 19; 5 -->|output| 19; 0 -->|output| 19; 2["ℹ️ Input Dataset\ncopy_number_loss_status.tsv"]; style 2 stroke:#2c3143,stroke-width:4px; 20["PAPAA: PanCancer within disease analysis"]; 17 -->|output| 20; 3 -->|output| 20; 2 -->|output| 20; 1 -->|output| 20; 4 -->|output| 20; 5 -->|output| 20; 0 -->|output| 20; 21["PAPAA: PanCancer apply weights"]; 17 -->|output| 21; 3 -->|output| 21; 2 -->|output| 21; 1 -->|output| 21; 4 -->|output| 21; 5 -->|output| 21; 19 -->|classifier_coefficients| 21; 19 -->|classifier_summary| 21; 0 -->|output| 21; 22["PAPAA: PanCancer external sample status prediction"]; 19 -->|classifier_summary| 22; 11 -->|output| 22; 19 -->|classifier_coefficients| 22; 10 -->|output| 22; 23["PAPAA: PanCancer compare within models"]; 19 -->|classifier_coefficients| 23; 19 -->|classifier_summary| 23; 20 -->|classifier_coefficients| 23; 20 -->|classifier_summary| 23; 24["PAPAA: PanCancer visualize decisions"]; 21 -->|classifier_decisions| 24; 25["PAPAA: PanCancer alternative genes pathwaymapper"]; 21 -->|classifier_decisions| 25; 3 -->|output| 25; 2 -->|output| 25; 1 -->|output| 25; 5 -->|output| 25; 18 -->|output| 25; 26["PAPAA: PanCancer map mutation class"]; 21 -->|classifier_decisions| 26; 3 -->|output| 26; 2 -->|output| 26; 6 -->|output| 26; 18 -->|output| 26; 27["PAPAA: PanCancer pathway count heatmaps"]; 25 -->|all_gene_metric_ranks| 27; 21 -->|classifier_decisions| 27; 17 -->|output| 27; 3 -->|output| 27; 2 -->|output| 27; 1 -->|output| 27; 4 -->|output| 27; 5 -->|output| 27; 18 -->|output| 27; 25 -->|pathway_metrics_pathwaymapper| 27; 0 -->|output| 27; 28["PAPAA: PanCancer targene summary figures"]; 25 -->|all_gene_metric_ranks| 28; 19 -->|classifier_summary| 28; 26 -->|mutation_classification_scores| 28; 19 -->|classifier_coefficients| 28; 27 -->|path_events_per_sample| 28; 19 -->|summary_counts| 28; 29["PAPAA: PanCancer targene cell line predictions"]; 28 -->|amino_acid_mutation_scores| 29; 7 -->|output| 29; 15 -->|output| 29; 13 -->|output| 29; 19 -->|classifier_summary| 29; 8 -->|output| 29; 9 -->|output| 29; 12 -->|output| 29; 14 -->|output| 29; 28 -->|nucleotide_mutation_scores| 29; 19 -->|classifier_coefficients| 29; 18 -->|output| 29; 3["ℹ️ Input Dataset\ncopy_number_gain_status.tsv"]; style 3 stroke:#2c3143,stroke-width:4px; 30["PAPAA: PanCancer targene pharmacology"]; 16 -->|output| 30; 29 -->|gdsc1_ccle_targene_pharmacology_predictions| 30; 29 -->|gdsc1_targene_pharmacology_predictions| 30; 29 -->|gdsc2_ccle_targene_pharmacology_predictions| 30; 29 -->|gdsc2_targene_pharmacology_predictions| 30; 4["ℹ️ Input Dataset\nmutation_burden_freeze.tsv"]; style 4 stroke:#2c3143,stroke-width:4px; 5["ℹ️ Input Dataset\nsample_freeze.tsv"]; style 5 stroke:#2c3143,stroke-width:4px; 6["ℹ️ Input Dataset\nmc3.v0.2.8.PUBLIC.maf"]; style 6 stroke:#2c3143,stroke-width:4px; 7["ℹ️ Input Dataset\nCCLE_DepMap_18Q1_maf_20180207.txt"]; style 7 stroke:#2c3143,stroke-width:4px; 8["ℹ️ Input Dataset\ngdsc1_ccle_pharm_fitted_dose_data.txt"]; style 8 stroke:#2c3143,stroke-width:4px; 9["ℹ️ Input Dataset\ngdsc2_ccle_pharm_fitted_dose_data.txt"]; style 9 stroke:#2c3143,stroke-width:4px;
Inputs
Input | Label |
---|---|
Input dataset | pancan_rnaseq_freeze.tsv |
Input dataset | pancan_mutation_freeze.tsv |
Input dataset | GSE69822_pi3k_sign.txt |
Input dataset | GSE69822_pi3k_trans.csv |
Input dataset | GDSC_CCLE_common_mut_cnv_binary.tsv.gz |
Input dataset | ccle_rnaseq_genes_rpkm_20180929_mod.tsv.gz |
Input dataset | GDSC_EXP_CCLE_converted_name.tsv.gz |
Input dataset | CCLE_MUT_CNA_AMP_DEL_binary_Revealer.tsv |
Input dataset | compounds_of_interest.txt |
Input dataset | cosmic_cancer_classification.tsv |
Input dataset | path_rtk_ras_pi3k_genes.txt |
Input dataset | copy_number_loss_status.tsv |
Input dataset | copy_number_gain_status.tsv |
Input dataset | mutation_burden_freeze.tsv |
Input dataset | sample_freeze.tsv |
Input dataset | mc3.v0.2.8.PUBLIC.maf |
Input dataset | CCLE_DepMap_18Q1_maf_20180207.txt |
Input dataset | gdsc1_ccle_pharm_fitted_dose_data.txt |
Input dataset | gdsc2_ccle_pharm_fitted_dose_data.txt |
Outputs
From | Output | Label |
---|
Tools
To use these workflows in Galaxy you can either click the links to download the workflows, or you can right-click and copy the link to the workflow which can be used in the Galaxy form to import workflows.
Importing into Galaxy
Below are the instructions for importing these workflows directly into your Galaxy server of choice to start using them!Hands-on: Importing a workflow
- Click on Workflow on the top menu bar of Galaxy. You will see a list of all your workflows.
- Click on galaxy-upload Import at the top-right of the screen
- Provide your workflow
- Option 1: Paste the URL of the workflow into the box labelled “Archived Workflow URL”
- Option 2: Upload the workflow file in the box labelled “Archived Workflow File”
- Click the Import workflow button
Below is a short video demonstrating how to import a workflow from GitHub using this procedure:
Version History
Version | Commit | Time | Comments |
---|---|---|---|
5 | 7ea290c2b | 2020-12-18 19:00:40 | aberrant_pi3k_activity_tutorial update-18 |
4 | 34bebb50b | 2020-12-18 15:16:05 | reformat workflow and add tags and annotation |
3 | b0a2a036f | 2020-12-17 15:58:17 | aberrant_pi3k_activity_tutorial update-17 |
2 | d49e2046f | 2020-12-15 16:12:32 | pi3k_aberrant_activity_tutorial update-12 |
1 | 5eeb04b88 | 2020-12-11 22:40:16 | pi3k_aberrant activity tutorial edit-8 |
For Admins
Installing the workflow tools
wget https://training.galaxyproject.org/training-material/topics/statistics/tutorials/aberrant_pi3k_pathway_analysis/workflows/main_workflow.ga -O workflow.ga workflow-to-tools -w workflow.ga -o tools.yaml shed-tools install -g GALAXY -a API_KEY -t tools.yaml workflow-install -g GALAXY -a API_KEY -w workflow.ga --publish-workflows